Dynamic network analysis (DNA) is an emergent scientific field that brings together traditional social network analysis (SNA), link analysis (LA) and multi-agent systems (MAS) within network science and network theory. There are two aspects of this field. The first is the statistical analysis of DNA data. The second is the utilization of simulation to address issues of network dynamics. DNA networks vary from traditional social networks in that they are larger, dynamic, multi-mode, multi-plex networks, and may contain varying levels of uncertainty. The main difference of DNA to SNA is DNA taken the domain of time into account. One of the most notable and earliest case of the use of DNA is in Sampson's monastery study, where he took snapshots of the same network from different intervals and observed and analyzed the evolution of the network.[1]
DNA statistical tools are generally optimized for large-scale networks and admit the analysis of multiple networks simultaneously in which, there are multiple types of nodes (multi-node) and multiple types of links (multi-plex). In contrast, SNA statistical tools focus on single or at most two mode data and facilitate the analysis of only one type of link at a time.
DNA statistical tools tend to provide more measures to the user, because they have measures that use data drawn from multiple networks simultaneously. From a computer simulation perspective, nodes in DNA are like atoms in quantum theory, nodes can be, though need not be, treated as probabilistic. Whereas nodes in a traditional SNA model are static, nodes in a DNA model have the ability to learn. Properties change over time; nodes can adapt: A company's employees can learn new skills and increase their value to the network; Or, capture one terrorist and three more are forced to improvise. Change propagates from one node to the next and so on. DNA adds the element of a network's evolution and considers the circumstances under which change is likely to occur.
No comments:
Post a Comment